Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry

Author:

Chou Tzu-Chi,Hsu Wei,Wang Ching-Ho,Chen Yu-Ju,Fang Jim-Min

Abstract

Abstract Background The timely and accurate diagnosis of specific influenza virus strains is crucial to effective prophylaxis, vaccine preparation and early antiviral therapy. The detection of influenza A viruses is mainly accomplished using polymerase chain reaction (PCR) techniques or antibody-based assays. In conjugation with the immunoassay utilizing monoclonal antibody, mass spectrometry is an alternative to identify proteins derived from a target influenza virus. Taking advantage of the large surface area-to-volume ratio, antibody-conjugated magnetic nanoparticles can act as an effective probe to extract influenza virus for sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and on-bead mass spectrometric analysis. Results Iron oxide magnetic nanoparticles (MNP) were functionalized with H5N2 viral antibodies targeting the hemagglutinin protein and capped with methoxy-terminated ethylene glycol to suppress nonspecific binding. The antibody-conjugated MNPs possessed a high specificity to H5N2 virus without cross-reactivity with recombinant H5N1 viruses. The unambiguous identification of the captured hemagglutinin on magnetic nanoparticles was realized by SDS-PAGE visualization and peptide sequence identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Conclusions The assay combining efficient magnetic separation and MALDI-MS readout offers a rapid and sensitive method for virus screening. Direct on-MNP detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) provided high sensitivity (~103 EID50 per mL) and a timely diagnosis within one hour. The magnetic nanoparticles encapsulated with monoclonal antibodies could be used as a specific probe to distinguish different subtypes of influenza.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3