MICaFVi: A Novel Magnetic Immuno-Capture Flow Virometry Nano-Based Diagnostic Tool for Detection of Coronaviruses

Author:

Samman Nosaibah1ORCID,El-Boubbou Kheireddine234ORCID,Al-Muhalhil Khawlah1,Ali Rizwan1ORCID,Alaskar Ahmed15,Alharbi Naif Khalaf2ORCID,Nehdi Atef16

Affiliation:

1. Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia

2. King Abdullah International Medical Research Center (KAIMRC) & King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia

3. Nanomaterials for Bioimaging Group (nanoBIG), Facultad de Ciencias, Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain

4. Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain

5. Department of Oncology, King Abdulaziz Medical City, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia

6. Department of Life Sciences, Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia

Abstract

COVID-19 has resulted in a pandemic that aggravated the world’s healthcare systems, economies, and education, and caused millions of global deaths. Until now, there has been no specific, reliable, and effective treatment to combat the virus and its variants. The current standard tedious PCR-based tests have limitations in terms of sensitivity, specificity, turnaround time, and false negative results. Thus, an alternative, rapid, accurate, and sensitive diagnostic tool that can detect viral particles, without the need for amplification or viral replication, is central to infectious disease surveillance. Here, we report MICaFVi (Magnetic Immuno-Capture Flow Virometry), a novel precise nano-biosensor diagnostic assay for coronavirus detection which combines the MNP-based immuno-capture of viruses for enrichment followed by flow-virometry analysis, enabling the sensitive detection of viral particles and pseudoviruses. As proof of concept, virus-mimicking spike-protein-coated silica particles (VM-SPs) were captured using anti-spike-antibody-conjugated MNPs (AS-MNPs) followed by detection using flow cytometry. Our results showed that MICaFVi can successfully detect viral MERS-CoV/SARS-CoV-2-mimicking particles as well as MERS-CoV pseudoviral particles (MERSpp) with high specificity and sensitivity, where a limit of detection (LOD) of 3.9 µg/mL (20 pmol/mL) was achieved. The proposed method has great potential for designing practical, specific, and point-of-care testing for rapid and sensitive diagnoses of coronavirus and other infectious diseases.

Funder

King Abdullah International Medical Research Center

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3