Qualitative networks: a symbolic approach to analyze biological signaling networks

Author:

Schaub Marc A,Henzinger Thomas A,Fisher Jasmin

Abstract

Abstract Background A central goal of Systems Biology is to model and analyze biological signaling pathways that interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of Boolean networks. With this framework, we use formal verification methods to check whether a model is consistent with the laboratory experimental observations on which it is based. If the model does not conform to the data, we suggest a revised model and the new hypotheses are tested in-silico. Results We consider networks in which elements range over a small finite domain allowing more flexibility than Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144 elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its extensive analysis. Conclusion We introduce an approach for constructing computational models of biological systems that extends the framework of Boolean networks and uses formal verification methods for the analysis of the model. This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies in biology.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3