Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6

Author:

Wu Mingcan,Zhu Rongfang,Lu Jiayang,Lei Anping,Zhu Hui,Hu Zhangli,Wang JiangxinORCID

Abstract

Abstract Purpose Under different abiotic-stress conditions, the unicellular green microalga Dunaliella salina accumulates large amounts of carotenoids which are accompanied by fatty acid biosynthesis. Carotenoids and fatty acids both possess long carbon backbones; however, the relationship between carotenoid and fatty acid metabolism is controversial and remains poorly understood in microalgae. Methods In this study, we investigated the growth curves and the β-carotene, lutein, lipid, and fatty acid contents of D. salina Y6 grown under different abiotic-stress conditions, including high light, nitrogen depletion, and high salinity. Results Both high-salinity and nitrogen-depleted conditions significantly inhibited cell growth. Nitrogen depletion significantly induced β-carotene accumulation, whereas lutein production was promoted by high light. The accumulation of lipids did not directly positive correlate with β-carotene and lutein accumulation under the three tested abiotic-stress conditions, and levels of only a few fatty acids were increased under specific conditions. Conclusion Our data indicate that cellular β-carotene accumulation in D. salina Y6 positive correlates with accumulation of specific fatty acids (C16:0, C18:3n3, C14:0, and C15:0) rather than with total fatty acid content under different abiotic stress conditions.

Funder

National Natural Science Foundation of China

Guangdong Province Introduction of Innovative R&D Team

Science and Technology Planning Project of Shenzhen Municipality

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3