Characterization of β-galactosidase and α-galactosidase activities from the halophilic bacterium Gracilibacillus dipsosauri

Author:

Deutch Charles E.,Farden Amy M.,DiCesare Emily S.

Abstract

Abstract Purpose Gracilibacillus dipsosauri strain DD1 is a salt-tolerant Gram-positive bacterium that can hydrolyze the synthetic substrates o-nitrophenyl-β-d-galactopyranoside (β-ONP-galactose) and p-nitrophenyl-α-d-galactopyranoside (α-PNP-galactose). The goals of this project were to characterize the enzymes responsible for these activities and to identify the genes encoding them. Methods G. dipsosauri strain DD1 was grown in tryptic soy broth containing various carbohydrates at 37 °C with aeration. Enzyme activities in cell extracts and whole cells were measured colorimetrically by hydrolysis of synthetic substrates containing nitrophenyl moieties. Two enzymes with β-galactosidase activity and one with α-galactosidase activity were partially purified by ammonium sulfate fractionation, ion-exchange chromatography, and gel-filtration chromatography from G. dipsosauri. Coomassie Blue-stained bands corresponding to each activity were excised from nondenaturing polyacrylamide gels and subjected to peptide sequencing after trypsin digestion and HPLC/MS analysis. Result Formation of β-galactosidase and α-galactosidase activities was repressed by d-glucose and not induced by lactose or d-melibiose. β-Galactosidase I had hydrolytic and transgalactosylation activity with lactose as the substrate but β-galactosidase II showed no activity towards lactose. The α-galactosidase had hydrolytic and transgalactosylation activity with d-melibiose but not with d-raffinose. β-Galactosidase I had a lower Km with β-ONP-galactose as the substrate (0.693 mmol l−1) than β-galactosidase II (1.662 mmol l−1), was active at more alkaline pH, and was inhibited by the product d-galactose. β-Galactosidase II was active at more acidic pH, was partially inhibited by ammonium salts, and showed higher activity with α-PNP-arabinose as a substrate. The α-galactosidase had a low Km with α-PNP-galactose as the substrate (0.338 mmol l−1), a pH optimum of about 7, and was inhibited by chloride-containing salts. β-Galactosidase I activity was found to be due to the protein A0A317L6F0 (encoded by gene DLJ74_04930), β-galactosidase II activity to the protein A0A317KZG3 (encoded by gene DLJ74_12640), and the α-galactosidase activity to the protein A0A317KU47 (encoded by gene DLJ74_17745). Conclusions G. dipsosauri forms three intracellular enzymes with different physiological properties which are responsible for the hydrolysis of β-ONP-galactose and α-PNP-galactose. BLAST analysis indicated that similar β-galactosidases may be formed by G. ureilyticus, G. orientalis, and G. kekensis and similar α-galactosidases by these bacteria and G. halophilus.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3