THERMAL MODELS OF BIOHEAT TRANSFER EQUATIONS IN LIVING TISSUE AND THERMAL DOSE EQUIVALENCE DUE TO HYPERTHERMIA

Author:

SHIH TZU-CHING1,KOU HONG-SEN1,LIAUH CHIHNG-TSUNG2,LIN WIN-LI3

Affiliation:

1. Department of Mechanical Engineering, Tatung University, Taipei, Taiwan

2. Department of Mechanical Engineering, Kun Shan University of Technology, Tainan, Taiwan

3. Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

Abstract

This review focuses both on the basic formulations of bioheat equation in the living tissue and on the determination of thermal dose during thermal therapy. The temperature distributions inside the heated tissues, generally controlled by heating modalities, are obtained by solving the bioheat transfer equation. However, the major criticism for the Pennes' model focused on the assumption that the heat transfer by blood flow occurs in a non-directional, heat sink- or source-like term. Several bioheat transfer models have been introduced to compare their convective and perfusive effects in vascular tissues. The present review also elucidates thermal dose equivalence that represents the extent of thermal damage or destruction of tissue in the clinical treatment of tumor with local hyperthermia. In addition, this study uses the porous medium concept to describe the heat transfer in the living tissue with the directional effect of blood flow, and the polynomial expression of thermal dose in terms of the curve fitting of the experimental isosurvival curve data by Dewey et al. Results show that the values of factor R is a function of the heating temperature instead of the two different constants suggested by Sapareto and Dewey.

Publisher

National Taiwan University

Subject

Biomedical Engineering,Bioengineering,Biophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3