Heat transfer simulation in laser irradiated retinal tissues

Author:

Truong Linh T DORCID,Lesniewski Peter J,Wedding A Bruce

Abstract

A realistic model of human retinal tissues to simulate thermal performance of optical laser photocoagulation therapy is presented. The key criteria to validate the treatment effectiveness is to ensure the photocoagulation temperature between 60 and 70 °C is reached in the treatment region of interest. The model presented consists of truncated volumes of the retinal pigment epithelium (RPE) and adjacent retinal tissues. Two cases of choroid pigmentation are modelled to signify extreme cases of human eye difference: albino and dark colour choroid pigmentation. Conditions for consistent heating over the irradiated treatment spot is modelled for laser beams with different intensity profiles: ‘top-hat’, Gaussian and ‘donut’ modes. The simulation considers both uniform heating within retinal tissue layers and spatial intensity decay due to absorption along the direction of laser propagation. For a 500 μm spot, pulse length 100 ms and incident power to the cornea of 200 mW, realistic spatial variation in heating results in peak temperatures increasing within the RPE and shifting towards the choroid in the case of choroidal pigmentation. Finite element analysis methodology, where heat transfer theory governs the temperature evolution throughout tissues peripheral to the irradiated RPE is used to determine the zone of therapeutic benefit. While a TEM01 donut mode beam produces lower peak temperatures in the RPE for a given incident laser power, it reduces the volume of retinal tissue reaching excessive temperatures and maximises the zone of therapeutic benefit. Described are simulation limitations, boundary conditions, grid size and mesh growth factor required for realistic simulation.

Publisher

IOP Publishing

Subject

General Nursing

Reference45 articles.

1. Ocular lesions produced by an optical maser (laser);Milton;Science,1961

2. Lasers in ophthalmology;Seitz;Lancet,2000

3. Pan-retinal photocoagulation and other forms of laser treatment and drug therapies for non-proliferative diabetic retinopathy: systematic review and economic evaluation;Royle;Health Technology Assessment.,2015

4. Effect of pre-exposure fundus temperature on threshold lesion temperatures in the laser-irradiated rabbit retina;Polhamus;Investig Ophthalmol Vis Sci.,1975

5. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment;Lagendijk;Phys. Med. Biol.,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3