Generalized Bio-Heat Transfer Model Combining With the Relaxation Mechanism and Nonequilibrium Heat Transfer

Author:

Li Meijun1,Wang Yingze1,Liu Dong1

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang City, Jiangsu Province 212013, China

Abstract

Abstract The heat transport within living biological tissue is a complicated process coupled with various physiological activities. The nonhomogeneous inner anatomical structure leads to an essential difference from classical heat transfer. The generalized model of bioheat transfer involving the relaxation mechanism as well as nonequilibrium heat transfer is first proposed to explore the heat transport properties within living biological tissues. Due to the volume averaging theory, the new local instantaneous energy equations of blood and tissue are constructed separately by introducing the phase lags, in which the delay effect between the heat flux and temperature gradient absent in existing generalized models is considered. The effective phase lags covering the delay effect and nonequilibrium effect are obtained on this basis. A detailed parametric study has been conducted to estimate the values of these effective phase lags and evaluate their contributions on heat transport within living biological tissues. The results state that the effective phase lags depend on the anatomical structure of tissues and its physical properties. The delay effect is dominated in general and has a higher temperature elevation than that induced by nonequilibrium effect only.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3