Affiliation:
1. School of Petroleum Engineering China University of Petroleum Qingdao China
2. School of Civil Engineering Qingdao University of Technology Qingdao China
Abstract
AbstractInverse modeling can provide a reliable geological model for subsurface flow numerical simulation, which is a challenging issue that requires calibration of the uncertain parameters of the geological model to establish an acceptable match between simulation data and observation data. The general inverse modeling method needs to iteratively adjust the uncertain parameters, which is a difficult and time‐consuming high‐dimensional sampling problem. To address this problem, we propose a deep‐learning‐based inverse modeling method called pix2pixGAN‐DSI. In this method, the deep‐learning‐based image‐to‐image generative adversarial network (pix2pixGAN) is constructed to directly predict the posterior parameter fields from the posterior dynamic responses obtained by the data‐space inversion (DSI) method. This inverse modeling method does not need to iteratively adjust the uncertain parameters, which improves computational efficiency. The effectiveness of the proposed method is verified through a Gaussian model case and two non‐Gaussian channelized model cases. Through the analysis of posterior realizations, matching and forecast of production data, and uncertainty quantification, the results show that the proposed method can obtain reasonable estimates without iteration and parameterization.
Funder
National Natural Science Foundation of China
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献