Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations
Author:
Affiliation:
1. Life and Environmental Sciences DepartmentUniversity of California Merced CA USA
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018WR024357
Reference105 articles.
1. Abdelbaki A. M. Youssef M. A. Naguib E. M. F. Kiwan M. E. &El‐Giddawy E. I.(2009).Evaluation of pedotransfer functions for predicting saturated hydraulic conductivity for U.S. soils.2009 Reno Nevada June 21 ‐ June 24 2009.https://doi.org/10.13031/2013.27309
2. Spatio-temporal variability in physical properties of different textured soils under similar management and semi-arid climatic conditions
3. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective
4. Selection bias in gene extraction on the basis of microarray gene-expression data
5. Estimation of models for cumulative infiltration of soil using machine learning methods
Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of machine learning techniques for accurate prediction of unfrozen water content in frozen soils;Cold Regions Science and Technology;2024-11
2. Urban transport emission prediction analysis through machine learning and deep learning techniques;Transportation Research Part D: Transport and Environment;2024-10
3. A Review on Soil Moisture Dynamics Monitoring in Semi-Arid Ecosystems: Methods, Techniques, and Tools Applied at Different Scales;Applied Sciences;2024-08-30
4. Inclusion of fractal dimension in machine learning models improves the prediction accuracy of hydraulic conductivity;Stochastic Environmental Research and Risk Assessment;2024-08-11
5. Representative Sample Size for Estimating Saturated Hydraulic Conductivity via Machine Learning: A Proof‐Of‐Concept Study;Water Resources Research;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3