Study of a high-precision complex 3D geological modelling method based on a fine KNN and kriging coupling algorithm: a case study for Jiangsu, China

Author:

Liu Xiaozheng,Zhang Peng,Guo Yakun,Ma Guotao,Liu Ming

Abstract

A high-precision, complex, three-dimensional (3D) geological model can directly express the attributes of stratum thickness, geological structure, lithology and spatial form, which can provide a reliable basis for the development and utilization of underground space and planning decisions. However, it is difficult to perform accurate modelling due to the lack of basic data. As such, this paper proposes coupling a machine learning algorithm (K-nearest neighbour (KNN)) with the kriging algorithm to construct the topological relationship between the Delaunay triangle and the Thiessen polygon in order to perform the simulation and prediction of virtual drilling. Based on KNN, support vector machine (SVM) and neural network algorithms as well as the virtual borehole encryption data, data standardization processing and analysis are carried out. Through model verification, algorithm optimization is realized, and the optimal modelling method is explored. The results show that the fine KNN algorithm improved by Bayesian optimization can effectively improve the modelling accuracy through 0.1-m encryption, standardization processing and 5-fold cross-validation. Stratum modelling combined with the fine KNN and kriging algorithms can obtain a more accurate modelling without adding virtual boreholes. The improved levels of upper and lower hybrid modelling with an appropriate number of profile boreholes can also effectively optimize model accuracy. Both modelling accuracy and efficiency can be significantly improved by using Delaunay triangles and Thiessen polygons with virtual boreholes. Stratum modelling can effectively express the geological pinch-out in areas with adequate degrees of stratification, and hybrid modelling performs well in irregular geological bodies such as karsts and lenses.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3