Layered Green and Ampt Infiltration With Redistribution

Author:

La Follette Peter12ORCID,Ogden Fred L.2,Jan Ahmad12

Affiliation:

1. Lynker Boulder CO USA

2. Office of Water Prediction National Oceanic and Atmospheric Administration Tuscaloosa AL USA

Abstract

AbstractNumerical solution of the one‐dimensional Richards equation (RE) accurately partitions precipitation into infiltration and runoff in capillary dominated soils. However, its application sometimes requires significant computational effort and presents reliability challenges. The Green and Ampt (G&A) approach represents a conservative and efficient method to calculate one‐dimensional infiltration but is limited to deep, well drained, uniform, non‐layered soils for a single rainfall event. The original G&A model and subsequent advancements represent wetting fronts as discrete objects, rather than discretizing the model domain in space, yielding a computationally simpler model than the RE. This paper describes an extension of the G&A method into layered soils on a continuous basis that we call Layered Green and Ampt with Redistribution (LGAR). Assumptions employed in the derivation include: uniform soil hydraulic properties within layers, single‐valued capillary head at the interface between soil layers, and no influence of groundwater table on soil moisture. Wetting fronts advance due to the combined effects of gravity and wetting front capillary drive in a layered soil profile. Results of multi‐month continuous LGAR simulations of infiltration using forcing and soil hydraulic data from USDA SCAN sites are compared against infiltration calculated using the HYDRUS‐1D RE solver using standard metrics. The assumptions employed in deriving the LGAR method limit its application to situations where cumulative potential evapotranspiration is greater than cumulative precipitation, typical of arid or semi‐arid conditions. LGAR is a mass‐conservative, computationally efficient, reliable and reasonably accurate method for simulating infiltration over extended time periods compared to the numerical solution of the RE in layered soils in arid and semi‐arid regions.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3