A Novel Analytical Solution for Ponded Infiltration With Consideration of a Developing Saturated Zone

Author:

Ma DongHao1ORCID,Wu SiCong12,Liu ZhiPeng3,Zhang JiaBao1ORCID

Affiliation:

1. State Experimental Station of Agro‐Ecosystem in Fengqiu State Key Laboratory of Soil and Sustainable Agriculture Institute of Soil Science Chinese Academy of Sciences Nanjing China

2. University of Chinese Academy of Sciences Beijing China

3. College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing China

Abstract

AbstractPonding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green‐Ampt model solution (GAMS) was derived for a one‐dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS‐1D than the traditional and the recently improved Green‐Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one‐dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth (hp), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity Ks, water‐entry suction hd and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher Ks values, greater n, and lower −hd. Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall‐runoff simulations.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3