Affiliation:
1. Lynker Fort Collins CO USA
2. Department of Geography University of California, Santa Barbara Santa Barbara CA USA
3. North Carolina State University Raleigh NC USA
4. West Consultants Sacramento CA USA
5. Research Applications Laboratory National Center for Atmospheric Research Boulder NC USA
6. University of Cincinnati Cincinnati OH USA
Abstract
AbstractWith an increasing number of continental‐scale hydrologic models, the ability to evaluate performance is key to understanding uncertainty and making improvements to the model(s). We hypothesize that any model, running a single set of physics, cannot be “properly” calibrated for the range of hydroclimatic diversity as seen in the contenintal United States. Here, we evaluate the NOAA National Water Model (NWM) version 2.0 historical streamflow record in over 4,200 natural and controlled basins using the Nash‐Sutcliffe Efficiency metric decomposed into relative performance, and conditional, and unconditional bias. Each of these is evaluated in the contexts of meteorologic, landscape, and anthropogenic characteristics to better understand where the model does poorly, what potentially causes the poor performance, and what similarities systemically poor performing areas share. The primary objective is to pinpoint traits in places with good/bad performance and low/high bias. NWM relative performance is higher when there is high precipitation, snow coverage (depth and fraction), and barren area. Low relative skill is associated with high potential evapotranspiration, aridity, moisture‐and‐energy phase correlation, and forest, shrubland, grassland, and imperviousness area. We see less bias in locations with high precipitation, moisture‐and‐energy phase correlation, barren, and grassland areas and more bias in areas with high aridity, snow coverage/fraction, and urbanization. The insights gained can help identify key hydrological factors underpinning NWM predictive skill; enforce the need for regionalized parameterization and modeling; and help inform heterogenous modeling systems, like the NOAA Next Generation Water Resource Modeling Framework, to enhance ongoing development and evaluation.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献