Soil Respiration Responses to Throughfall Exclusion Are Decoupled From Changes in Soil Moisture for Four Tropical Forests, Suggesting Processes for Ecosystem Models

Author:

Cusack Daniela F.12ORCID,Dietterich Lee H.1ORCID,Sulman Benjamin N.3ORCID

Affiliation:

1. Department of Ecosystem Science and Sustainability Colorado State University Fort Collins CO USA

2. Smithsonian Tropical Research Institute Panama City Republic of Panama

3. Oak Ridge National Laboratory Environmental Sciences Division and Climate Change Science Institute Oak Ridge TN USA

Abstract

AbstractClimatic drying is predicted for many tropical forests yet models remain poorly parameterized for these ecosystems, hampering predictions of forest‐climate interactions. We applied an integrated model–experiment approach, parameterizing an ecosystem model with tropical forest observational data and comparing model predictions to a field drying manipulation. We hypothesized that drying suppresses soil CO2 fluxes (i.e., respiration) in relatively dry tropical forests but increases CO2 fluxes in wetter tropical forests by alleviating anaerobiosis. We measured soil CO2 fluxes during wet‐dry cycles from 2015 to 2022 in four Panamanian forests that vary in rainfall and soil fertility. Measured soil CO2 fluxes declined in the dry season and peaked in the early wet season ahead of peak soil moisture, resulting in lower soil moisture optima for respiration than previously modeled. We then parameterized the model using field data and the new moisture‐respiration response functions. The updated model predicted increased soil CO2 fluxes with drying in wetter and fertile forests and suppressed fluxes in drier, infertile forests. In contrast to model predictions, a chronic throughfall exclusion experiment initially suppressed soil respiration across forests, with sustained suppression for four years in the wettest forest only (−28% ± 4% during the dry season). In the fertile forest, drying eventually elevated CO2 fluxes over this period (+75% ± 28% during the late wet season). The unexpected negative drying effect in the wettest, infertile forest could have resulted from reduced vertical flushing of nutrients into soils. Including hydro‐nutrient interactions in ecosystem models could improve predictions of tropical forest‐climate feedbacks.

Funder

Office of Science

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3