Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems—But where do we go from here?

Author:

Knapp Alan K.1ORCID,Condon Kathleen V.1,Folks Christine C.2,Sturchio Matthew A.1ORCID,Griffin‐Nolan Robert J.3ORCID,Kannenberg Steven A.4ORCID,Gill Amy S.5ORCID,Hajek Olivia L.1ORCID,Siggers J. Alexander1,Smith Melinda D.1ORCID

Affiliation:

1. Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

2. Department of Agricultural Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado USA

3. Department of Biological Sciences California State University Chico California USA

4. Department of Biology West Virginia University Morgantown West Virginia USA

5. Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado USA

Abstract

Abstract We review results from field experiments that simulate drought, an ecologically impactful global change threat that is predicted to increase in magnitude, extent, duration and frequency. Our goal is to address, from primarily an ecosystem perspective, the questions ‘What have we learned from drought experiments?’ and ‘Where do we go from here?’. Drought experiments are among the most numerous climate change manipulations and have been deployed across a wide range of biomes, although most are conducted in short‐statured, water‐limited ecosystems. Collectively, these experiments have enabled ecologists to quantify the negative responses to drought that occur for most aspects of ecosystem structure and function. Multiple meta‐analyses of responses have also enabled comparisons of relative effect sizes of drought across hundreds of sites, particularly for carbon cycle metrics. Overall, drought experiments have provided strong evidence that ecosystem sensitivity to drought increases with aridity, but that plant traits associated with aridity are not necessarily predictive of drought resistance. There is also intriguing evidence that as drought magnitude or duration increases to extreme levels, plant strategies may shift from drought tolerance to drought escape/avoidance. We highlight three areas where more drought experiments are needed to advance our understanding. First, because drought is intensifying in multiple ways, experiments are needed that address alterations in drought magnitude versus duration, timing and/or frequency (individually and interactively). Second, drivers of drought may be shifting—from precipitation deficits to rising atmospheric demand for water—and disentangling how ecosystems respond to changes in hydrological ‘supply versus demand’ is critical for understanding drought impacts in the future. Finally, more attention should be focussed on post‐drought recovery periods since legacies of drought can affect ecosystem functioning much longer than the drought itself. We conclude with a call for a fundamental shift in the focus of drought experiments from those designed primarily as ‘response experiments’, quantifying the magnitude of change in ecosystem structure and function, to more ‘mechanistic experiments’—those that explicitly manipulate ecological processes or attributes thought to underpin drought responses. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Institute of Food and Agriculture

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3