Soil carbon emissions and influential factors across various stages of vegetation succession in vegetated concrete

Author:

Xu Yakun,Luo Ting,Wu Bin,Xia Zhenyao,Xu Wennian,Gao Jiazhen

Abstract

AbstractAfter ecological restoration of high and steep slopes in the project disturbed area, soil properties, soil microorganisms, litter types and root types change with the succession of vegetation cover communities. However, the effects of different vegetation successional stages on soil respiration dynamics remain unclear. To elucidate trends and drivers of soil respiration in the context of vegetation succession, we used spatio-temporal alternative applied research. Vegetated concrete-restored slopes (VC) with predominantly herbaceous (GS), shrub (SS), and arborvitae (AS) vegetation were selected, and naturally restored slopes (NS) were used as control. SRS1000 T soil carbon flux measurement system was used to monitor soil respiration rate. The results showed that soil respiration (RS) and fractions of all four treatments showed a single-peak curve, with peaks concentrated in July and August. During the succession of vegetation from herbaceous to arborvitae on VC slopes, RS showed a decreasing trend, and GS was significantly higher than AS by 45%; Compared to NS, RS was 29.81% and 21.56% higher in GS and SS successional stages, respectively, and 27.51% lower in AS stage. RS was significantly and positively correlated with nitrate nitrogen (NO3-N) and microbial biomass nitrogen (MBN), both of which are important factors in regulating RS under vegetation succession. A bivariate model of soil temperature and water content explains the variability of Rs better. Overall, RS was higher than NS in the transition stage and lower than NS in the equilibrium stage of the vegetation community on VC slopes, and the RS decreases gradually with the vegetation succession of artificial ecological restoration slopes.

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12(13), 4121–4132 (2015).

2. Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90 (2018).

3. Zhang, Y. et al. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta-analysis. Ecol. Evol. 00, 1–11 (2020).

4. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).

5. Liu, J. et al. A bibliometric analysis of the impact of ecological restoration on carbon sequestration in ecosystems. Forests 14(7), 1442 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3