Seasonal Biotic Processes Vary the Carbon Turnover by Up To One Order of Magnitude in Wetlands

Author:

Pasut Chiara12,Tang Fiona H. M.34ORCID,Minasny Budiman5ORCID,Warren Charles R.5ORCID,Dijkstra Feike A.5ORCID,Riley William J.6ORCID,Maggi Federico1

Affiliation:

1. Environmental Engineering School of Civil Engineering The University of Sydney Sydney NSW Australia

2. CSIRO Agriculture & Food Urrbrae SA Australia

3. Department of Crop Production Ecology Swedish University of Agricultural Sciences (SLU) Uppsala Sweden

4. School of Environmental and Rural Science University of New England Armidale NSW Australia

5. School of Life and Environmental Sciences Sydney Institute of Agriculture The University of Sydney Sydney NSW Australia

6. Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA

Abstract

AbstractSoil Organic Carbon (SOC) turnover τ in wetlands and the corresponding governing processes are still poorly represented in numerical models. τ is a proxy to the carbon storage potential in each SOC pool and C fluxes within the whole ecosystem; however, it has not been comprehensively quantified in wetlands globally. Here, we quantify the turnover time τ of various SOC pools and the governing biotic and abiotic processes in global wetlands using a comprehensively tested process‐based biogeochemical model. Globally, we found that τ ranges between 1 and 1,000 years and is controlled by anaerobic (in 78% of global wetlands area) and aerobic (15%) respiration, and by abiotic destabilization from soil minerals (5%). τ in the remaining 2% of wetlands is controlled by denitrification, sulfur reduction, and leaching below the subsoil. τ can vary by up to one order of magnitude in temperate, continental, and polar regions due to seasonal temperature and can shift from being aerobically controlled to anaerobically controlled. Our findings of seasonal variability in SOC turnover suggest that wetlands are susceptible to climate‐induced shifts in seasonality, thus requiring better accounting of seasonal fluctuations at geographic scales to estimate C exchanges between land and atmosphere.

Funder

University of Sydney

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3