Critical inundation level for methane emissions from wetlands

Author:

Calabrese SalvatoreORCID,Garcia Alicia,Wilmoth Jared L,Zhang Xinning,Porporato Amilcare

Abstract

Abstract Global methane (CH4) emissions have reached approximately 600 Tg per year, 20%–40% of which are from wetlands. Of the primary factors affecting these emissions, the water table level is among the most uncertain. Here we conduct a global meta-analysis of chamber and flux-tower observations of CH4 emissions and employ a novel mechanistic model to show that wetlands have maximum emissions at a critical level of inundation and discuss its origin. This maximum arises from an interplay between methanogenesis, methanotrophy, and transport, whose rates vary differently with the inundation level. The specific location of the critical water level above the soil surface may differ depending on wetland characteristics, for example temperature or the presence of macrophytes with aerenchyma. However, data suggest that globally a water level of about 50 cm is the most favorable to CH4 emissions. Keeping the water level away from this critical value could reduce methane emissions in human-made wetlands, which comprise at least one fifth of the global wetland area.

Funder

National Institute of Food and Agriculture

Division of Earth Sciences

Carbon Mitigation Initiative, Princeton University

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3