Spatiotemporal Variations in the Carbon Sequestration Capacity of Plateau Lake Wetlands Regulated by Land Use Control under Policy Guidance

Author:

Chen Bo1,Zhang Meiqi1,Yang Rui1,Tang Wenling1

Affiliation:

1. College of Public Administration, Guizhou University of Finance and Economics, Guiyang 550025, China

Abstract

Lake wetlands play a crucial role in mitigating climate change. Human activities and climate change impact the carbon sequestration capacity of lake wetlands. However, this process is intricate. Clarifying the decisive factors that affect carbon sequestration is crucial for preserving, utilizing, and enhancing the carbon sequestration capacity of plateau lake wetlands. Here we analyzed the regulatory role of land use under policy guidance on the carbon sequestration capacity of the plateau lake wetland of Caohai (CHLW), SW China. The results show that: (1) The cumulative carbon sequestration varied significantly from 1990 to 2020, with the highest carbon sequestration of 15.80 × 105 t C in 1995 and the lowest of 3.18 × 105 t C in 2020, mainly originating from endogenous carbon sequestration within the plateau lake wetlands. (2) As of 2020, the carbon stock of CHLW was approximately 2.54 × 108 t C. (3) The carbon sequestration in CHLW experienced a dynamic change process of decrease-increase-decrease over 30 years, mainly influenced by land use changes under policy regulation, with human and natural factors accounting for 91% and 9%, respectively. (4) Under three simulated scenarios (Q1, Q2, and Q3), the ecological priority scenario exhibited positive regulation on the carbon sequestration of CHLW and the entire protected area in 2030 and 2060, with the highest increase in carbon sequestration. This scenario is consistent with the current conservation policy, indicating that the current protection policy for CHLW is scientifically reasonable. This research demonstrates how land use and climate changes impact carbon storage in wetlands, with consideration of policy guidance. It provides references for utilizing and conserving lake wetlands worldwide, ultimately achieving the dual goals of wetland conservation and carbon neutrality.

Funder

Guizhou Provincial Key Technology R&D Program

Guizhou University of Finance and Economics University-level Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3