Affiliation:
1. Civil and Environmental Engineering The Pennsylvania State University University Park PA USA
2. Hydraulic and Ocean Engineering National Cheng Kung University Tainan City ROC
3. Amazon Search Palo Alto CA USA
Abstract
AbstractRecently, rainfall‐runoff simulations in small headwater basins have been improved by methodological advances such as deep neural networks (NNs) and hybrid physics‐NN models—particularly, a genre called differentiable modeling that intermingles NNs with physics to learn relationships between variables. However, hydrologic routing simulations, necessary for simulating floods in stem rivers downstream of large heterogeneous basins, had not yet benefited from these advances and it was unclear if the routing process could be improved via coupled NNs. We present a novel differentiable routing method (δMC‐Juniata‐hydroDL2) that mimics the classical Muskingum‐Cunge routing model over a river network but embeds an NN to infer parameterizations for Manning's roughness (n) and channel geometries from raw reach‐scale attributes like catchment areas and sinuosity. The NN was trained solely on downstream hydrographs. Synthetic experiments show that while the channel geometry parameter was unidentifiable, n can be identified with moderate precision. With real‐world data, the trained differentiable routing model produced more accurate long‐term routing results for both the training gage and untrained inner gages for larger subbasins (>2,000 km2) than either a machine learning model assuming homogeneity, or simply using the sum of runoff from subbasins. The n parameterization trained on short periods gave high performance in other periods, despite significant errors in runoff inputs. The learned n pattern was consistent with literature expectations, demonstrating the framework's potential for knowledge discovery, but the absolute values can vary depending on training periods. The trained n parameterization can be coupled with traditional models to improve national‐scale hydrologic flood simulations.
Funder
National Oceanic and Atmospheric Administration
Publisher
American Geophysical Union (AGU)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献