Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach
Author:
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Link
http://link.springer.com/content/pdf/10.1007/s11069-020-04438-2.pdf
Reference58 articles.
1. Adamowski J, Chan HF, Prasher SO, Sharda VN (2012) Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J Hydroinformatics 14(3):731–744
2. Adnan RM, Liang Z, Trajkovic S, Zounemat-Kermani M, Li B, Kisi O (2019) Daily streamflow prediction using optimally pruned extreme learning machine. J Hydrol 577:123981
3. Adnan RM, Yuan X, Kisi O, Adnan M, Mehmood A (2018) Stream flow forecasting of poorly gauged mountainous watershed by least square support vector machine, fuzzy genetic algorithm and m5 model tree using climatic data from nearby station. Water Resour Manag 32(14):4469–4486
4. Adnan RM, Liang Z, Heddam S, Zounemat-Kermani M, Kisi O, Li B (2019a) Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J Hydrol 586:124371. https://doi.org/10.1016/j.jhydrol.2019.124371
5. Al-Sudani ZA, Salih SQ, Yaseen ZM (2019) Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol 573:1–12
Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Impact of climate change on spatiotemporal patterns of snow hydrology: Conceptual frameworks, machine learning versus nested model;Physics and Chemistry of the Earth, Parts A/B/C;2024-12
2. Runoff Prediction for Hydrological Applications Using an INFO-Optimized Deep Learning Model;Processes;2024-08-22
3. Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins;Water;2024-08-02
4. Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy;Water Science & Technology;2024-07-03
5. Unleashing the power of AI: revolutionizing runoff prediction beyond NRCS-CN method;Arabian Journal of Geosciences;2024-06-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3