Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data

Author:

Adamowski Jan1,Chan Hiu Fung1,Prasher Shiv O.1,Sharda Vishwa Nath2

Affiliation:

1. Department of Bioresource Engineering, McGill University, 21 111 Lakeshore Road, Ste. Anne de Bellevue, QC, Canada H9X 3V9

2. Central Soil and Water Conservation Research and Training Institute, 218 Kaulagarh Road, Dehradun 248 195, India

Abstract

Himalayan watersheds are characterized by mountainous topography and a lack of available data. Due to the complexity of rainfall–runoff relationships in mountainous watersheds and the lack of hydrological data in many of these watersheds, process-based models have limited applicability for runoff forecasting in these areas. In light of this, accurate forecasting methods that do not necessitate extensive data sets are required for runoff forecasting in mountainous watersheds. In this study, multivariate adaptive regression spline (MARS), wavelet transform artificial neural network (WA-ANN), and regular artificial neural network (ANN) models were developed and compared for runoff forecasting applications in the mountainous watershed of Sainji in the Himalayas, an area with limited data for runoff forecasting. To develop and test the models, three micro-watersheds were gauged in the Sainji watershed in Uttaranchal State in India and data were recorded from July 1 2001 to June 30 2003. It was determined that the best WA-ANN and MARS models were comparable in terms of forecasting accuracy, with both providing very accurate runoff forecasts compared to the best ANN model. The results indicate that the WA-ANN and MARS methods are promising new methods of short-term runoff forecasting in mountainous watersheds with limited data, and warrant additional study.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3