In-depth simulation of rainfall–runoff relationships using machine learning methods

Author:

Fuladipanah Mehdi1,Shahhosseini Alireza1,Rathnayake Namal2,Azamathulla Hazi Md.3,Rathnayake Upaka4ORCID,Meddage D. P. P.5,Tota-Maharaj Kiran6

Affiliation:

1. a Department of Civil Engineering, Malekan Branch, Islamic Azad University, Malekan, Iran

2. b Department of Civil Engineering, Faculty of Engineering, The University of Tokyo, 1 Chome-1-1 Yayoi, Bunkyo City, Tokyo 113-8656, Japan

3. c Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of West Indies, St. Augustine 32080, Trinidad And Tobago

4. d Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University, Sligo F91 YW50, Ireland

5. e Department of Civil Engineering, University of New South Wales, Canberra, Australia

6. f Department of Civil Engineering, College of Engineering and Physical Sciences, School of Infrastructure and Sustainable Engineering, Aston University Birmingham, Birmingham B4 7ET, England, United Kingdom

Abstract

ABSTRACT Measurement inaccuracies and the absence of precise parameters value in conceptual and analytical models pose challenges in simulating the rainfall–runoff modeling (RRM). Accurate prediction of water resources, especially in water scarcity conditions, plays a distinctive and pivotal role in decision-making within water resource management. The significance of machine learning models (MLMs) has become pronounced in addressing these issues. In this context, the forthcoming research endeavors to model the RRM utilizing four MLMs: Support Vector Machine, Gene Expression Programming (GEP), Multilayer Perceptron, and Multivariate Adaptive Regression Splines (MARS). The simulation was conducted within the Malwathu Oya watershed, employing a dataset comprising 4,765 daily observations spanning from July 18, 2005, to September 30, 2018, gathered from rainfall stations, and Kappachichiya hydrometric station. Of all input combinations, the model incorporating the input parameters Qt−1, Qt−2, and R̄t was identified as the optimal configuration among the considered alternatives. The models' performance was assessed through root mean square error (RMSE), mean average error (MAE), coefficient of determination (R2), and developed discrepancy ratio (DDR). The GEP model emerged as the superior choice, with corresponding index values (RMSE, MAE, R2, DDRmax) of (43.028, 9.991, 0.909, 0.736) during the training process and (40.561, 10.565, 0.832, 1.038) during the testing process.

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3