Development of a Distributed Physics‐Informed Deep Learning Hydrological Model for Data‐Scarce Regions

Author:

Zhong Liangjin1ORCID,Lei Huimin1ORCID,Yang Jingjing1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering Key Laboratory of Hydrosphere Sciences of the Ministry of Water Resources Department of Hydraulic Engineering Tsinghua University Beijing China

Abstract

AbstractClimate change has exacerbated water stress and water‐related disasters, necessitating more precise streamflow simulations. However, in the majority of global regions, a deficiency of streamflow data constitutes a significant constraint on modeling endeavors. Traditional distributed hydrological models and regionalization approaches have shown suboptimal performance. While current deep learning (DL)‐related models trained on large data sets excel in spatial generalization, the direct applicability of these models in certain regions with unique hydrological processes can be challenging due to the limited representativeness within the training data set. Furthermore, transfer learning DL models pre‐trained on large data sets still necessitate local data for retraining, thereby constraining their applicability. To address these challenges, we present a physics‐informed DL model based on a distributed framework. It involves spatial discretization and the establishment of differentiable hydrological models for discrete sub‐basins, coupled with a differentiable Muskingum method for channel routing. By introducing upstream‐downstream relationships, model errors in sub‐basins propagate through the river network to the watershed outlet, enabling the optimization using limited downstream streamflow data, thereby achieving spatial simulation of ungauged internal sub‐basins. The model, when trained solely on the downstream‐most station, outperforms the distributed hydrological model in streamflow simulation at both the training station and upstream held‐out stations. Additionally, in comparison to transfer learning models, our model requires fewer gauge stations for training, but achieves higher precision in simulating streamflow on spatially held‐out stations, indicating better spatial generalization ability. Consequently, this model offers a novel approach to hydrological simulation in data‐scarce regions, especially those with poor hydrological representativeness.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Reference69 articles.

1. Catchment Attributes and MEteorology for Large‐Sample studies (CAMELS) version 2.0;Addor N.;UCAR/NCAR,2017

2. Higher Frozen Soil Permeability Represented in a Hydrological Model Improves Spring Streamflow Prediction From River Basin to Continental Scales

3. Beaudoing H. &Rodell M.(2020).GLDAS Noah land surface model L4 monthly 0.25 × 0.25 degree V2. 1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3