Fluvial Flood Losses in the Contiguous United States Under Climate Change

Author:

Rashid M. M.1ORCID,Wahl T.2,Villarini G.3ORCID,Sharma A.4ORCID

Affiliation:

1. Division of Coastal Sciences School of Ocean Science and Engineering The University of Southern Mississippi Ocean Spring MS USA

2. Civil Environmental, and Construction Engineering & National Center for Integrated Coastal Research University of Central Florida Orlando FL USA

3. IIHR—Hydroscience & Engineering University of Iowa Iowa City IA USA

4. School of Civil and Environmental Engineering The University of New South Wales Sydney NSW Australia

Abstract

AbstractFlooding is one of the most devastating natural disasters causing significant economic losses. One of the dominant drivers of flood losses is heavy precipitation, with other contributing factors such as built environments and socio‐economic conditions superimposed to it. To better understand the risk profile associated with this hazard, we develop probabilistic models to quantify the future likelihood of fluvial flood‐related property damage exceeding a critical threshold (i.e., high property damage) at the state level across the conterminous United States. The model is conditioned on indicators representing heavy precipitation amount and frequency derived from observed and downscaled precipitation. The likelihood of high property damage is estimated from the conditional probability distribution of annual total property damage, which is derived from the joint probability of the property damage and heavy precipitation indicators. Our results indicate an increase in the probability of high property damage (i.e., exceedance of 70th percentile of observed annual property damage for each state) in the future. Higher probability of high property damage is projected to be clustered in the states across the western and south‐western United States, and parts of the U.S. Northwest and the northern Rockies and Plains. Depending on the state, the mean annual probability of high property damage in these regions could range from 38% to 80% and from 46% to 95% at the end of the century (2090s) under RCP4.5 and RCP8.5 scenarios, respectively. This is equivalent to 20%–40% increase in the probability compared to the historical period 1996–2005. Results show that uncertainty in the projected probability of high property damage ranges from 14% to 35% across the states. The spatio‐temporal variability of the uncertainty across the states and three future decades (i.e., 2050s, 2070s, and 2090s) exhibits nonstationarity, which is driven by the uncertainty associated with the probabilistic prediction models and climate change scenarios.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3