Leveraging machine learning for predicting flash flood damage in the Southeast US

Author:

Alipour AtiehORCID,Ahmadalipour AliORCID,Abbaszadeh PeymanORCID,Moradkhani HamidORCID

Abstract

Abstract Flash flood is a recurrent natural hazard with substantial impacts in the Southeast US (SEUS) due to the frequent torrential rainfalls that occur in the region, which are triggered by tropical storms, thunderstorms, and hurricanes. Flash floods are costly natural hazards, primarily due to their rapid onset. Therefore, predicting property damage of flash floods is imperative for proactive disaster management. Here, we present a systematic framework that considers a variety of features explaining different components of risk (i.e. hazard, vulnerability, and exposure), and examine multiple machine learning methods to predict flash flood damage. A large database of flash flood events consisting of more than 14 000 events are assessed for training and testing the methodology, while a multitude of data sources are utilized to acquire reliable information related to each event. A variable selection approach was employed to alleviate the complexity of the dataset and facilitate the model development process. The random forest (RF) method was then used to map the identified input covariates to a target variable (i.e. property damage). The RF model was implemented in two modes: first, as a binary classifier to estimate if a region of interest was damaged in any particular flood event, and then as a regression model to predict the amount of property damage associated with each event. The results indicate that the proposed approach is successful not only for classifying damaging events (with an accuracy of 81%), but also for predicting flash flood damage with a good agreement with the observed property damage. This study is among the few efforts for predicting flash flood damage across a large domain using mesoscale input variables, and the findings demonstrate the effectiveness of the proposed methodology.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3