Uncovering Drivers of Atmospheric River Flood Damage Using Interpretable Machine Learning

Author:

Bowers Corinne1ORCID,Serafin Katherine A.2ORCID,Baker Jack W.3ORCID

Affiliation:

1. Dept. of Civil and Environmental Engineering, Stanford Univ., 450 Jane Stanford Way, Stanford, CA 94305; presently, U.S. Geological Survey, Reston, VA 20192 (corresponding author). ORCID: .

2. Professor, Dept. of Geography, Univ. of Florida, Gainesville, FL 32611. ORCID:

3. Professor, Dept. of Civil and Environmental Engineering, Stanford Univ., 450 Jane Stanford Way, Stanford, CA 94305. ORCID:

Publisher

American Society of Civil Engineers (ASCE)

Reference77 articles.

1. ACS (American Community Survey). 2023a. “DP04: Selected housing characteristics 2009-2021.” Accessed November 21 2023. https://data.census.gov/.

2. ACS (American Community Survey). 2023b. “DP05: ACS demographic and housing estimates 2009-2021.” Accessed November 21 2023. https://data.census.gov/.

3. Leveraging machine learning for predicting flash flood damage in the Southeast US

4. Visualizing the effects of predictor variables in black box supervised learning models

5. What drives households to buy flood insurance? New evidence from Georgia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3