Ensemble‐Based Neural Network Modeling for Hydrologic Forecasts: Addressing Uncertainty in the Model Structure and Input Variable Selection
Author:
Affiliation:
1. School of Civil Engineering and Environmental Science University of Oklahoma Norman OK USA
2. National Institute of Meteorological Science Seogwipo South Korea
3. School of Civil and Environmental Engineering Yonsei University Seoul South Korea
Funder
National Research Foundation of Korea
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019WR026262
Reference62 articles.
1. Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
2. Combining multiple time series models through a robust weighted mechanism
3. Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
4. Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering
5. Application of artificial neural network ensembles in probabilistic hydrological forecasting;Araghinejad S.;Journal of Hydrology,2011
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel method of nonuniform phase space reconstruction for multivariate prediction of daily runoff;Journal of Hydrology;2024-07
2. Short- and long-term prediction models of rubber tree powdery mildew disease index based on meteorological variables and climate system indices;Agricultural and Forest Meteorology;2024-07
3. A novel voting ensemble model empowered by metaheuristic feature selection for accurate flash flood susceptibility mapping;Geomatics, Natural Hazards and Risk;2024-06-12
4. Runoff Prediction in Different Forecast Periods via a Hybrid Machine Learning Model for Ganjiang River Basin, China;Water;2024-06-01
5. Enhanced physics‐informed neural networks for efficient modelling of hydrodynamics in river networks;Hydrological Processes;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3