Runoff Prediction in Different Forecast Periods via a Hybrid Machine Learning Model for Ganjiang River Basin, China

Author:

Wang Wei1,Tang Shinan2,Zou Jiacheng3ORCID,Li Dong3,Ge Xiaobin3,Huang Jianchu3,Yin Xin4

Affiliation:

1. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

2. General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing 100120, China

3. Hydrology and Water Resources Monitoring Center of Lower Ganjiang River, Yichun 336000, China

4. Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

Accurate forecasting of monthly runoff is essential for efficient management, allocation, and utilization of water resources. To improve the prediction accuracy of monthly runoff, the long and short memory neural networks (LSTM) coupled with variational mode decomposition (VMD) and principal component analysis (PCA), namely VMD-PCA-LSTM, was developed and applied at the Waizhou station in the Ganjiang River Basin. The process begins with identifying the main forecasting factors from 130 atmospheric circulation indexes using the PCA method and extracting the stationary components from the original monthly runoff series using the VMD method. Then, the correlation coefficient method is used to determine the lag of the above factors. Lastly, the monthly runoff is simulated by combining the stationary components and key forecasting factors via the LSTM model. Results show that the VMD-PCA-LSTM model effectively addresses the issue of low prediction accuracy at high flows caused by a limited number of samples. Compared to the single LSTM and VMD-LSTM models, this comprehensive approach significantly enhances the model’s predictive accuracy, particularly during the flood season.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

the Jiangxi Province “Science and Technology + Water Conservancy” Joint Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3