Enhanced physics‐informed neural networks for efficient modelling of hydrodynamics in river networks

Author:

Luo Xiao12,Yuan Saiyu123ORCID,Tang Hongwu123ORCID,Xu Dong2,Ran Qihua2,Cen Yuhao4,Liang Dongfang4

Affiliation:

1. The National Key Laboratory of Water Disaster Prevention Hohai University Nanjing China

2. Key Laboratory of Hydrologic‐Cycle and Hydrodynamic‐System of Ministry of Water Resources Hohai University Nanjing Jiangsu China

3. Yangtze Institute for Conservation and Development Hohai University Nanjing China

4. Department of Engineering University of Cambridge Cambridge UK

Abstract

AbstractThis article enhances the physics‐informed neural networks (PINNs) method to effectively model the hydrodynamics of real‐world river networks with irregular cross‐sections. First, we pre‐process hydraulic parameters to optimize training speed without compromising accuracy, achieving a 91.67% acceleration compared with traditional methods. To address the vanishing gradient problem, layer normalization is also incorporated into the architecture. We also introduce novel physical constraints—water level range and junction node equations—to ensure effective training convergence and enrich the model with additional physical insights. Two practical case studies using HEC‐RAS benchmarks demonstrate that our improved PINN method can predict river network hydrodynamics with less data and is less sensitive to time step size, allowing for longer computational time steps. Incorporating physical knowledge, our enhanced PINN methodology emerges as an efficient and promising avenue for modelling the complexities of hydrodynamic processes in natural river networks.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3