Affiliation:
1. Earth System Modelling School of Engineering and Design Technical University of Munich Munich Germany
2. Potsdam Institute for Climate Impact Research Member of the Leibniz Association Potsdam Germany
3. Department of Mathematics Global Systems Institute University of Exeter Exeter UK
Abstract
AbstractThe accurate representation of precipitation in Earth system models (ESMs) is crucial for reliable projections of the ecological and socioeconomic impacts in response to anthropogenic global warming. The complex cross‐scale interactions of processes that produce precipitation are challenging to model, however, inducing potentially strong biases in ESM fields, especially regarding extremes. State‐of‐the‐art bias correction methods only address errors in the simulated frequency distributions locally at every individual grid cell. Improving unrealistic spatial patterns of the ESM output, which would require spatial context, has not been possible so far. Here, we show that a postprocessing method based on physically constrained generative adversarial networks (cGANs) can correct biases of a state‐of‐the‐art, CMIP6‐class ESM both in local frequency distributions and in the spatial patterns at once. While our method improves local frequency distributions equally well as gold‐standard bias‐adjustment frameworks, it strongly outperforms any existing methods in the correction of spatial patterns, especially in terms of the characteristic spatial intermittency of precipitation extremes.
Funder
Volkswagen Foundation
HORIZON EUROPE Marie Sklodowska-Curie Actions
Horizon 2020 Framework Programme
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献