Affiliation:
1. Bullard Laboratories Department of Earth Sciences University of Cambridge Cambridge UK
2. ENS de Lyon CNRS UMR 5276 LGL‐TPE Université Lyon 1 Villeurbanne France
3. Department of Earth Science and Engineering Imperial College London UK
4. Department of Earth and Environmental Sciences Tulane University New Orleans LA USA
Abstract
AbstractConstraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, several causal mechanisms are possible to explain the intermittently observed X‐discontinuity (X) at 230–350 km depth: the coesite‐stishovite phase transition, the enstatite to clinoenstatite phase transition, and/or carbonated silicate melting, all requiring a local enrichment of basalt. Africa hosts a broad range of terranes, from Precambrian cores to Cenozoic hotspots with or without lowermost mantle origins. With the absence of subduction below the margins of the African plate for >0.5 Ga, Africa presents an ideal study locale to explore the origins of the X. Traditional receiver function (RF) approaches used to map seismic discontinuities, such as common conversion‐point stacking, ignore slowness information crucial for discriminating converted upper mantle phases from surface multiples. By manually assessing depth and slowness stacks for 1° radius overlapping bins, normalized vote mapping of RF stacks is used to robustly assess the spatial distribution of converted upper mantle phases. The X is mapped beneath Africa at 233–340 km depth, revealing patches of heterogeneity proximal to mantle upwellings in Afar, Canaries, Cape Verde, East Africa, Hoggar, and Réunion with further observations beneath Cameroon, Madagascar, and Morocco. There is a lack of an X beneath southern Africa and strikingly, the magmatic eastern rift branch of the southern East African Rift. With no relationships existing between depth and amplitudes of observed X and estimated mantle temperatures, multiple causal mechanisms are required across a range of continental geodynamic settings.
Funder
Natural Environment Research Council
HORIZON EUROPE European Research Council
Division of Earth Sciences
Publisher
American Geophysical Union (AGU)
Subject
Geochemistry and Petrology,Geophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献