Defining Continental Lithosphere as a Layer With Abundant Frozen‐In Structures That Scatter Seismic Waves

Author:

Levin V.1ORCID,Lebedev S.23,Fullea J.34,Li Y.5ORCID,Chen X.1ORCID

Affiliation:

1. Rutgers University Piscataway NJ USA

2. University of Cambridge Cambridge UK

3. Dublin Institute for Advanced Studies (DIAS) Dublin Ireland

4. Universidad Complutense de Madrid Madrid Spain

5. Binghamton University Binghamton NY USA

Abstract

AbstractWe investigate the structure of the continental lithosphere by combining two approaches: a systematic survey of abrupt changes in seismic properties detected by P‐to‐S converted body waves and an integrated geophysical‐petrological inversion for temperature and density in the upper mantle. We refine the global thermo‐chemical model WINTERC‐G in eastern North America by including detailed regional information on the crust into petrological inversions and combine it with the upper mantle layering beneath eastern North America yielded by anisotropy‐aware receiver‐function analysis. Eastern North America's Archean, Proterozoic and Paleozoic lithospheres show an excellent agreement between the depth to the 1,300°C isotherm that bounds the lithosphere and the depth range where converted waves detect abrupt changes in seismic properties. Boundaries with these abrupt changes reside within the rigid mechanical lithosphere and are uncommon in the convecting mantle beneath it. The boundaries include both impedance increases and decreases with depth, as well as anisotropy changes, and must have developed over the course of the assembly and evolution of the lithosphere. In the asthenosphere below, such heterogeneities appear to have been largely mixed out by convection. The existence of abundant interfaces with diverse origin can account for the commonly observed scattered signals from within the continental lithosphere and presents an alternative to the end‐member concept of the mid‐lithospheric discontinuity as a ubiquitous feature with a uniform origin. Generally, we can define continental lithosphere as a region of conductive heat transport and steep geotherm that is characterized by pervasive internal layering of density, elastic moduli and texture.

Funder

National Science Foundation

European Space Agency

Science Foundation Ireland

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution, Modification, and Deformation of Continental Lithosphere: Insights from the Eastern Margin of North America;Annual Review of Earth and Planetary Sciences;2024-07-23

2. A Taxonomy of Upper‐Mantle Stratification in the US;Journal of Geophysical Research: Solid Earth;2024-05

3. Seismic Evidence for Craton Formation by Underplating and Development of the MLD;Geophysical Research Letters;2024-02-18

4. Seismic Thermography;Bulletin of the Seismological Society of America;2024-01-26

5. Mapping the Structure and Metasomatic Enrichment of the Lithospheric Mantle Beneath the Kimberley Craton, Western Australia;Geochemistry, Geophysics, Geosystems;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3