Mantle Wavespeed and Discontinuity Structure Below East Africa: Implications for Cenozoic Hotspot Tectonism and the Development of the Turkana Depression

Author:

Boyce A.12ORCID,Kounoudis R.3ORCID,Bastow I. D.3ORCID,Cottaar S.1ORCID,Ebinger C. J.4ORCID,Ogden C. S.35ORCID

Affiliation:

1. Department of Earth Science Bullard Laboratories University of Cambridge Cambridge UK

2. Université Claude Bernard Lyon 1 ENS de Lyon CNRS UMR 5276 LGL‐TPE Villeurbanne France

3. Department of Earth Science and Engineering Royal School of Mines Imperial College London London UK

4. Department of Earth and Environmental Sciences Tulane University New Orleans LA USA

5. School of Geography and Geology University of Leicester Leicester UK

Abstract

AbstractEthiopia's Cenozoic flood basalt magmatism, uplift, and rifting have been attributed to one or more mantle plumes. The Nubian plate, however, has drifted 500–1,000 km north since initial magmatism at ∼45 Ma, having developed above mantle that now underlies the northern Tanzania craton and the low‐lying Turkana Depression. Unfortunately, our knowledge of mantle wavespeed structure and mantle transition zone (MTZ) topography below these regions is poorest, due to a historical lack of seismograph stations. The same data gap means we lack constraints on lithospheric structure in and around the NW–SE trending Mesozoic Anza rift. We exploit data from new seismograph networks in the Turkana Depression and neighboring northern Uganda to develop AFRP22, a new African absolute P‐wavespeed tomographic model that resolves whole mantle structure along the entire East African rift system. We also map MTZ thickness using Ps receiver functions. East Africa's thinnest MTZ (∼25 km thinning) underlies the northwest Turkana Depression. AFRP22 reveals a co‐located, previously unrecognized, slow wavespeed plume tail, extending from the MTZ, deep into the lower mantle. This plume may thus have contributed, along with the African Superplume, to the development of the 45–30 Ma flood basalt province that preceded extension. Pervasive sub‐lithospheric slow wavespeeds imply that Turkana's present‐day low elevation is explained best by Mesozoic and Cenozoic‐age crustal thinning. At ∼100 km depth, AFRP22 illuminates a fast wavespeed SE Ethiopian plateau. In addition to governing the northernmost limit of Mesozoic Anza rifting, the refractory nature of this lithospheric block likely minimized Cenozoic flood basalt magmatism there.

Funder

Natural Environment Research Council

European Research Council

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3