Auroral Oval Morphology: Dawn‐Dusk Asymmetry Partially Induced by Earth's Rotation

Author:

Decotte Margot1ORCID,Laundal Karl M.1ORCID,Hatch Spencer M.1ORCID,Reistad Jone P.1ORCID

Affiliation:

1. Department of Physics and Technology Birkeland Centre for Space Science University of Bergen Bergen Norway

Abstract

AbstractThe auroral oval morphology has been investigated in previous studies presenting maps of average auroral precipitation. However, such distributions tend to emphasize auroral intensity rather than the actual extent of the auroral oval. We develop a statistical method to characterize the auroral oval morphology by using 20 years of electron energy flux measurements from the Defense Meteorological Satellite Program/Special Sensor J (DMSP/SSJ); instead of relying on auroral oval boundaries, we derive the probability of observing aurora from a threshold of 2.109 eV/cm2/s/sr above which the total energy flux of electrons (in the energy range 1–30 keV) is defined as aurora. We then investigate the auroral occurrence probability (AOP) in the magnetic latitude‐magnetic local time (MLat‐MLT) sectors covered by DMSP for various conditions related to geomagnetic activity. Regardless of those conditions, the AOP distributions reveal a width asymmetry with a wider dawn‐to‐noon sector (06–12 MLT) compared to the dusk‐to‐midnight sector (18–24 MLT), the dawn preference getting even more pronounced as the geomagnetic activity decreases. In the context of an open magnetosphere, we investigate the relation between the observed extent asymmetry in the auroral oval and the magnetospheric plasma convection. Representing the plasma sheet magnetic flux as a one‐dimensional fluid subject to production on the nightside (closing of flux via reconnection) and loss on the dayside (opening of flux), we highlight similarities with the AOP in terms of MLT asymmetries. Finally, making use of this fluid model, we demonstrate that the corotation influence on the plasma convection pattern is consistent with the dawn‐dusk asymmetry observed in the AOP distributions.

Funder

Trond Mohn stiftelse

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3