Robust Estimates of Spatiotemporal Variations in the Auroral Boundaries Derived From Global UV Imaging

Author:

Ohma A.1ORCID,Laundal K. M.1ORCID,Madelaire M.1ORCID,Hatch S. M.1ORCID,Gasparini S.1ORCID,Reistad J. P.1ORCID,Walker S. J.1ORCID,Decotte M.1ORCID

Affiliation:

1. Department of Physics and Technology University of Bergen Bergen Norway

Abstract

AbstractThe aurora often appears as an approximately oval shape surrounding the magnetic poles, and is a visible manifestation of the intricate coupling between the Earth's upper atmosphere and the near‐Earth space environment. While the average size of the auroral oval increases with geomagnetic activity, the instantaneous shape and size of the aurora is highly dynamic. The identification of auroral boundaries holds significant value in space physics, as it serves to define and differentiate regions within the magnetosphere connected to the aurora by magnetic field lines. In this work, we demonstrate a new method to estimate the spatiotemporal variations of the poleward and equatorward boundaries in global UV images. We apply our method, which is robust against outliers and occasional bad data, to 2.5 years of UV imagery from the Imager for Magnetopause‐to‐Aurora Global Exploration satellite. The resulting data set is compared to recently published boundaries based on the same images (Chisham et al., 2022, https://doi.org/10.1029/2022JA030622), and shown to give consistent results on average. Our data set reveals a root mean square boundary normal velocity of 149 m/s for the poleward boundary and 96 m/s for the equatorward boundary and the velocities are shown to be stronger on the nightside than on the dayside. Interestingly, our findings demonstrate an absence of correlation between the amount of open magnetic flux and the amount of flux enclosed within the auroral oval.

Funder

Trond Mohn stiftelse

HORIZON EUROPE European Research Council

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3