A Quantitative Analysis of the Uncertainties on Reconnection Electric Field Estimates Using Ionospheric Measurements

Author:

Gasparini S.1ORCID,Hatch S. M.1ORCID,Reistad J. P.1ORCID,Ohma A.1ORCID,Laundal K. M.1ORCID,Walker S. J.1ORCID,Madelaire M.1ORCID

Affiliation:

1. Department of Physics and Technology University of Bergen Bergen Norway

Abstract

AbstractCalculating the magnetic flux transfer across the open‐closed boundary (OCB) per unit time and distance—the reconnection electric field—is an important means of remotely monitoring magnetospheric dynamics. Ground‐based measurements of plasma convection velocities together with velocities of the OCB are commonly used to infer reconnection rates. However, this approach is limited by spatial coverage and often lacks robust uncertainty quantification. In this paper, we assimilate Super Dual Auroral Radar Network convection measurements, ground magnetometer data, and estimates of the conductance derived from the Imager for Magnetopause‐to‐Aurora Global Exploration satellite imagers, using the Local mapping of polar ionospheric electrodynamics (Lompe) framework over a region in North America. We present a new method to assess various contributions to uncertainties in the derived reconnection electric fields, including a novel approach to estimate uncertainties in conductance from global auroral imaging. Our method is demonstrated on a substorm event with an associated pseudobreakup during a period of favorable observational coverage. In this case study, the uncertainties in the reconnection electric field are ∼5–10 mV/m at the peak of substorm expansion, roughly 15% of the peak reconnection electric field. We find that the main contributor to the reconnection electric field estimates after substorm onset is the OCB motion, whereas during the pseudobreakup the main contributor is ionospheric plasma convection.

Funder

Trond Mohn stiftelse

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3