A Comparison of Auroral Oval Proxies With the Boundaries of the Auroral Electrojets

Author:

Walker Simon James1ORCID,Laundal Karl Magnus1ORCID,Reistad Jone Peter1ORCID,Ohma Anders1ORCID,Hatch Spencer Mark1ORCID,Chisham Gareth2ORCID,Decotte Margot1ORCID

Affiliation:

1. Department of Physics and Technology University of Bergen Bergen Norway

2. British Antarctic Survey Cambridge UK

Abstract

AbstractThe boundaries of the auroral oval and auroral electrojets are an important source of information for understanding the coupling between the solar wind and the near‐earth plasma environment. Of these two types of boundaries the auroral electrojet boundaries have received comparatively little attention, and even less attention has been given to the connection between the two. Here we introduce a technique for estimating the electrojet boundaries, and other properties such as total current and peak current, from 1‐D latitudinal profiles of the eastward component of equivalent current sheet density. We apply this technique to a preexisting database of such currents along the 105° magnetic meridian, estimated using ground‐based magnetometers, producing a total of 11 years of 1‐min resolution electrojet boundaries during the period 2000–2020. Using statistics and conjunction events we compare our electrojet boundary data set with an existing electrojet boundary data set, based on Swarm satellite measurements, and auroral oval proxies based on particle precipitation and field‐aligned currents. This allows us to validate our data set and investigate the feasibility of an auroral oval proxy based on electrojet boundaries. Through this investigation we find the proton precipitation auroral oval is a closer match with the electrojet boundaries. However, the bimodal nature of the electrojet boundaries as we approach the noon and midnight discontinuities makes an average electrojet oval poorly defined. With this and the direct comparisons differing from the statistics, defining the proton auroral oval from electrojet boundaries across all local and universal times is challenging.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3