Affiliation:
1. Oak Ridge National Laboratory Oak Ridge TN USA
2. Smithsonian Environmental Research Center Edgewater MD USA
Abstract
AbstractCoastal ecosystems have been largely ignored in Earth system models but are important zones for carbon and nutrient processing. Interactions between water, microbes, soil, sediments, and vegetation are important for mechanistic representation of coastal processes and ecosystem function. To investigate the role of these feedbacks, we used a reactive transport model (PFLOTRAN) that has the capability to be connected to the Energy Exascale Earth System Model (E3SM). PFLOTRAN was used to incorporate redox reactions and track chemical species important for coastal ecosystems as well as define simple representations of vegetation dynamics. Our goal was to incorporate oxygen flux, salinity, pH, sulfur cycling, and methane production along with plant‐mediated transport of gases and tidal flux. Using porewater profile and incubation data for model calibration and evaluation, we were able to create depth‐resolved biogeochemical soil profiles for saltmarsh habitat and use this updated representation to simulate direct and indirect effects of elevated CO2 and temperature on subsurface biogeochemical cycling. We found that simply changing the partial pressure of CO2 or increasing temperature in the model did not fully reproduce observed changes in the porewater profile, but the inclusion of plant or microbial responses to CO2 and temperature manipulations was more accurate in representing porewater concentrations. This indicates the importance of characterizing tightly coupled vegetation‐subsurface processes for developing predictive understanding and the need for measurement of plant‐soil interactions on the same time scale to understand how hotspots or moments are generated.
Funder
U.S. Department of Energy
National Science Foundation
Publisher
American Geophysical Union (AGU)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献