Simulated plant-mediated oxygen input has strong impacts on fine-scale porewater biogeochemistry and weak impacts on integrated methane fluxes in coastal wetlands

Author:

Zhou Yongli,O’Meara Teri,Cardon Zoe G.,Wang Jiaze,Sulman Benjamin N.,Giblin Anne E.,Forbrich InkeORCID

Abstract

AbstractMethane (CH4) emissions from wetland ecosystems are controlled by redox conditions in the soil, which are currently underrepresented in Earth system models. Plant-mediated radial oxygen loss (ROL) can increase soil O2 availability, affect local redox conditions, and cause heterogeneous distribution of redox-sensitive chemical species at the root scale, which would affect CH4 emissions integrated over larger scales. In this study, we used a subsurface geochemical simulator (PFLOTRAN) to quantify the effects of incorporating either spatially homogeneous ROL or more complex heterogeneous ROL on model predictions of porewater solute concentration depth profiles (dissolved organic carbon, methane, sulfate, sulfide) and column integrated CH4 fluxes for a tidal coastal wetland. From the heterogeneous ROL simulation, we obtained 18% higher column averaged CH4 concentration at the rooting zone but 5% lower total CH4 flux compared to simulations of the homogeneous ROL or without ROL. This difference is because lower CH4 concentrations occurred in the same rhizosphere volume that was directly connected with plant-mediated transport of CH4 from the rooting zone to the atmosphere. Sensitivity analysis indicated that the impacts of heterogeneous ROL on model predictions of porewater oxygen and sulfide concentrations will be more important under conditions of higher ROL fluxes or more heterogeneous root distribution (lower root densities). Despite the small impact on predicted CH4 emissions, the simulated ROL drastically reduced porewater concentrations of sulfide, an effective phytotoxin, indicating that incorporating ROL combined with sulfur cycling into ecosystem models could potentially improve predictions of plant productivity in coastal wetland ecosystems.

Funder

DOE, Environmental System Science

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3