Integrating Tide‐Driven Wetland Soil Redox and Biogeochemical Interactions Into a Land Surface Model

Author:

Sulman Benjamin N.1ORCID,Wang Jiaze12ORCID,LaFond‐Hudson Sophie13ORCID,O’Meara Theresa A.1ORCID,Yuan Fengming1ORCID,Molins Sergi4ORCID,Hammond Glenn5ORCID,Forbrich Inke67ORCID,Cardon Zoe G.7ORCID,Giblin Anne7ORCID

Affiliation:

1. Oak Ridge National Laboratory Environmental Sciences Division and Climate Change Science Institute Oak Ridge TN USA

2. School of Earth and Climate Sciences University of Maine Orono ME USA

3. Now at Upper Midwest Water Science Center U.S. Geological Survey Madison WI USA

4. Earth and Environmental Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA

5. Environmental Subsurface Science Group Pacific Northwest National Laboratory Richland WA USA

6. Department of Environmental Sciences University of Toledo Toledo OH USA

7. The Ecosystems Center Marine Biological Laboratory Woods Hole MA USA

Abstract

AbstractRedox processes, aqueous and solid‐phase chemistry, and pH dynamics are key drivers of subsurface biogeochemical cycling and methanogenesis in terrestrial and wetland ecosystems but are typically not included in terrestrial carbon cycle models. These omissions may introduce errors when simulating systems where redox interactions and pH fluctuations are important, such as wetlands where saturation of soils can produce anoxic conditions and coastal systems where sulfate inputs from seawater can influence biogeochemistry. Integrating cycling of redox‐sensitive elements could therefore allow models to better represent key elements of carbon cycling and greenhouse gas production. We describe a model framework that couples the Energy Exascale Earth System Model (E3SM) Land Model (ELM) with PFLOTRAN biogeochemistry, allowing geochemical processes and redox interactions to be integrated with land surface model simulations. We implemented a reaction network including aerobic decomposition, fermentation, sulfate reduction, sulfide oxidation, methanogenesis, and methanotrophy as well as pH dynamics along with iron oxide and iron sulfide mineral precipitation and dissolution. We simulated biogeochemical cycling in tidal wetlands subject to either saltwater or freshwater inputs driven by tidal hydrological dynamics. In simulations with saltwater tidal inputs, sulfate reduction led to accumulation of sulfide, higher dissolved inorganic carbon concentrations, lower dissolved organic carbon concentrations, and lower methane emissions than simulations with freshwater tidal inputs. Model simulations compared well with measured porewater concentrations and surface gas emissions from coastal wetlands in the Northeastern United States. These results demonstrate how simulating geochemical reaction networks can improve land surface model simulations of subsurface biogeochemistry and carbon cycling.

Funder

Division of Ocean Sciences

Biological and Environmental Research

Publisher

American Geophysical Union (AGU)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3