Affiliation:
1. Johns Hopkins University Applied Physics Laboratory Laurel MD USA
2. University of Hawai'i Manoa Honolulu HI USA
3. Ames Research Center National Aeronautics and Space Administration Moffett Field CA USA
4. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA
Abstract
AbstractWe examine the effects of the submesoscale in mediating the response to projected warming of phytoplankton new production and export using idealized biogeochemical tracers in a high‐resolution regional model of the Porcupine Abyssal Plain region of the North Atlantic. We quantify submesoscale effects by comparing our control run to an integration in which submesoscale motions have been suppressed using increased viscosity. Annual new production is slightly reduced by submesoscale motions in a climate representative of the early 21st‐century and slightly increased by submesoscale motions in a climate representative of the late 21st‐century. The warmer climate at the end of the 21st century reduces resolved submesoscale activity by a factor of 2–3. Resolving the submesoscale, however, does not strongly impact the projected reduction in annual production under representative warming. Organic carbon export from the surface ocean includes both direct sinking of detritus (the biological gravitational pump) and advective transport mediated pathways; the sinking component is larger than advectively mediated vertical transport by up to an order of magnitude across a wide range of imposed sinking rates. The submesoscales are responsible for most of the advective carbon export, however, which is thus largely reduced in a warmer climate. In summary, our results demonstrate that resolving more of the submesoscale has a modest effect on present‐day new production, a small effect on simulated reductions in new production under global warming, and a large effect on advectively mediated export fluxes.
Funder
National Science Foundation
National Oceanic and Atmospheric Administration
National Aeronautics and Space Administration
Johns Hopkins University
Publisher
American Geophysical Union (AGU)
Subject
Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献