A Hybrid Model for Spatiotemporal Air Quality Prediction Based on Interpretable Neural Networks and a Graph Neural Network

Author:

Ding Huijuan1,Noh Giseop2

Affiliation:

1. Department of Computer Information Engineering, Cheongju University, Cheongju 28503, Republic of Korea

2. Division of Software Convergence, Cheongju University, Cheongju 28503, Republic of Korea

Abstract

To effectively address air pollution and enhance air quality, governments must be able to predict the air quality index with high accuracy and reliability. However, air quality prediction is subject to ambiguity and instability because of the atmosphere’s fluidity, making it challenging to identify the temporal and spatial correlations using a single model. Therefore, a new hybrid model is proposed based on an interpretable neural network and a graph neural network (INNGNN), which simulates the temporal and spatial dependence of air quality and achieves accurate multi-step air quality prediction. A time series is first interpreted using interpretable neural networks (INN) to extract the potentially important aspects that are easily overlooked in the data; second, a self-attention mechanism catches the local and global dependencies and associations in the time series. Lastly, a city map is created using a graph neural network (GNN) to determine the relationships between cities in order to extract the spatially dependent features. In the experimental evaluation, the results show that the INNGNN model performs better than comparable algorithms. Therefore, it is confirmed that the INNGNN model can effectively capture the temporal and spatial relationships and better predict air quality.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3