Mixed Layer Instabilities and Restratification

Author:

Boccaletti Giulio1,Ferrari Raffaele1,Fox-Kemper Baylor1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a forthcoming paper, the authors discuss a parameterization scheme to include the effect of MLIs in ocean models.

Publisher

American Meteorological Society

Subject

Oceanography

Reference60 articles.

1. Short-wavelength instabilities on coastal jets and fronts.;Barth;J. Geophys. Res.,1994

2. Free boundary effects in baroclinic instability.;Beron-Vera;J. Fluid Mech.,1997

3. On the behaviour of baroclinic waves undergoing horizontal deformation. II: Error-bound amplification and Rossby wave diagnostic.;Bishop;Quart. J. Roy. Meteor. Soc.,1993

4. On short-wave baroclinic instability.;Blumen;J. Atmos. Sci.,1979

5. The dynamics of long waves in a baroclinic westerly current.;Charney;J. Meteor.,1947

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3