The Impact of Vertical Wind Shear on the Outcome of Interactions Between Squall Lines and Cities

Author:

Naylor J.1ORCID,Mulholland J. P.2ORCID

Affiliation:

1. Department of Geographic and Environmental Sciences University of Louisville Louisville KY USA

2. Department of Atmospheric Sciences University of North Dakota Grand Forks ND USA

Abstract

AbstractThis study examines how organized lines of deep convective storms can be impacted by a large city with a prominent urban heat island and how low‐level environmental vertical wind shear may influence the outcomes of that interaction. Idealized simulations of squall lines are conducted in which a simplified urban area—defined by perturbations to skin temperature and surface roughness length—is placed in the center of an otherwise horizontally homogeneous domain. Simulations are conducted with three different magnitudes of low‐level vertical wind shear representing “weak,” “medium,” and “strong” shear environments. Results show that storms experience noticeable modification—including enhanced downwind precipitation—after interacting with a prominent urban heat island in all three shear configurations. However, the details of the modification are a function of the shear magnitude. In the medium and strong shear simulations, updrafts are enhanced via increased buoyancy after passing over a prominent urban heat island. In contrast, little updraft strengthening is evident in the weak‐shear simulations. Instead, near‐surface winds are enhanced downwind of the urban heat island due to a more prominent descending rear‐inflow jet.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3