Low-Tropospheric Shear in the Structure of Squall Lines: Impacts on Latent Heating under Layer-Lifting Ascent

Author:

Alfaro Diego A.1

Affiliation:

1. Universidad Nacional Autónoma de México, Mexico City, Mexico

Abstract

Abstract This study analyzes the dependence of the intensity of simulated midlatitude squall lines (SLs) at maturity on the strength of the environmental low-tropospheric shear, focusing on the amplitude of the latent heating produced within the deep convective region. The hypothesis motivating this investigation is that shear fundamentally affects system strength by modulating the mean convective instability of the storm-relative inflowing air, which is justified by the layer-lifting nature of convection in SLs. The layer-lifting model of convection (LLMC) is proposed for measuring convective instability in the context of SLs, wherein latent heating is estimated by contemplating the storm-relative inflow of CAPE. This framework is used for defining LLMC indices for the precipitation rate and the updraft’s strength and verticality. Idealized SLs at maturity, simulated in a variety of kinematic and thermodynamic environments, encompass wide-ranging values of LLMC indices and degrees of cold pool–shear balance within the spectrum of cold pool–dominated storms. LLMC indices account for much of the intercase variability in the updraft’s strength and verticality, the precipitation rate, and the convective mode apparent in radar reflectivity plots. It is found that the low-tropospheric shear fundamentally affects the intensity of SLs through its effects on latent heating, with stronger shear leading to larger inflowing convectively unstable air as a fraction of the total storm-relative inflow, favoring system intensity. This behavior could largely explain the dependence of storm intensity on the strength of shear documented in previous investigations, as cold pool–shear balance appears to be less restrictive on the intensity of mature SLs than the strength of the shear alone.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3