Machine Learning‐Based Detection of Weather Fronts and Associated Extreme Precipitation in Historical and Future Climates
Author:
Affiliation:
1. National Center for Atmospheric Research Boulder CO USA
2. ClimateAi San Francisco CA USA
3. North Carolina Institute for Climate Studies North Carolina State University Asheville NC USA
4. University of Maryland College Park MD USA
Funder
Biological and Environmental Research
National Science Foundation
National Oceanic and Atmospheric Administration
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2022JD037038
Reference83 articles.
1. Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations
2. Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations
3. On the use of indices to study extreme precipitation on sub-daily and daily timescales
4. Constraints on future changes in climate and the hydrologic cycle
5. The interplay of internal and forced modes of Hadley Cell expansion: lessons from the global warming hiatus
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Optimal Weighted Ensemble Machine Learning Approach to Accurate Estimate the Coastal Boundary Layer Height Using ERA5 Multi‐Variables;Journal of Geophysical Research: Atmospheres;2024-08-05
2. Assessing Multi-Scale Atmospheric Circulation Patterns for Improvements in Sub-Seasonal Precipitation Predictability in the Northern Great Plains;Atmosphere;2024-07-20
3. Identifying atmospheric rivers and their poleward latent heat transport with generalizable neural networks: ARCNNv1;Geoscientific Model Development;2024-05-02
4. Anthropogenic warming induced intensification of summer monsoon frontal precipitation over East Asia;Science Advances;2023-11-24
5. A Comparison of Water Uptake by Transpiration from Different Soil Depths among Three Land Cover Types in the Arid Northwest of China;Forests;2023-11-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3