UFKW Propagation in the Dissipative Thermosphere

Author:

Forbes Jeffrey M.1ORCID,Zhang Xiaoli1ORCID,Palo Scott E.1ORCID

Affiliation:

1. Ann and H.J. Smead Department of Aerospace Engineering Sciences University of Colorado, Boulder Boulder CO USA

Abstract

Abstract“Ultra‐fast” Kelvin waves (UFKWs) serve as a mechanism for coupling the tropical troposphere with the mesosphere, thermosphere and ionosphere. Herein, solutions to the linearized wave equations in a dissipative thermosphere in the form of “Hough Mode Extensions (HMEs)” are employed to better understand the vertical propagation of the subset of these waves that most effectively penetrate into the thermosphere above about 100 km altitude; namely, UFKWs with periods ≲4 days, vertical wavelengths (λz) ≳30 km, and zonal wavenumber s = −1. Molecular dissipation is found to broaden latitude structures of UFKWs with increasing height while their vertical wavelengths (λz) increase with latitude. Collisions with ions fixed to Earth's magnetic field (“ion drag”) are found to dampen UFKW amplitudes, increasingly so as the densities of those ions increase with increased solar flux. The direct effect of ion drag is to decelerate the zonal wind. This leads to suppression of vertical velocity and the velocity divergence, and related terms in the continuity and thermal energy equations, respectively, that lead to diminished perturbation temperature and density responses. Access is provided to the UFKW HMEs analyzed here in tabular and graphical form, and potential uses for future scientific studies are noted.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3