Affiliation:
1. School of Electronic Information Wuhan University Wuhan China
Abstract
AbstractWe studied the response of ionospheric total electron content (TEC) and equatorial electrojet (EEJ) to the ultra‐fast Kelvin wave (UFKW) at the equator in the mesosphere using zonal wind data obtained from TIMED Doppler Interferometer (TIDI), EEJ data over the monitoring station Jicamarca (12°S, 77°W) and global TEC maps. The least squares fitting method is utilized to perform a spectral analysis of zonal wind, EEJ and TEC. Our analysis results demonstrate that UFKW events can be divided into four categories: (a) UFKW events with both TEC and EEJ response; (b) UFKW events with TEC response but without EEJ response; (c) UFKW events with EEJ response but without TEC response; (d) UFKW events without neither TEC response nor EEJ response. The first type of UFKW events occur the most often and is generally thought to generate a response in EEJ at approximately 105–110 km through the dynamo effect. The polarization electric field associated with EEJ then produces a response in the ionospheric TEC through the fountain effect. The lack of EEJ response in the second type of UFKWs may be due to the influence of eastward background winds. We found that all UFKW events with EEJ response have a response in TEC. The fourth type of UFKWs have smaller amplitudes, shorter vertical wavelengths and longer periods, which make them more likely to dissipate and cannot propagate to higher altitudes. These UFKWs cannot propagate to the altitude of EEJ and produce a response in EEJ, much less in TEC.
Publisher
American Geophysical Union (AGU)